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Overview

@ The aim is to study the consequences of idiosyncratic earnings risk.

@ We will start with a simple model where risk is purely exogenous to
me.

@ We start with an econometric model for earnings:
In(Ein) = ein = BXin + ujp-
@ Log earnings can be decomposed into:
a deterministic (observable) component (5Xi).
a stochastic (unobservable) component (ujp).

implies shocks are proportional to log earnings.
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The Stochastic Component

@ An early approach (see MaCurdy (1982)) assumes that there are
persistent and transitory shocks following:

Uih = @ + Zip + Tip
Tih = MA(q)tin
Zjh = pZip—1 + €in
@ 1 are transitory shocks including:
bonuses.
short sickness.
strikes.

inflation.

@ «; is permanent heterogeneity.
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The Stochastic Component

Uip = O + Zip + Tin
Tin = MA(q)tin
Zih = PZih—1 T €in
@ ¢ are persistent shocks including:
shifts in idiosyncratic labor demand.
promotions.
job-ladder effects.

losing a high tenured job.

@ Usually these models are estimated by General Methods of Moments.
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General Methods of Moments (GMM)

@ Suppose our model creates a total of M(p) moments.

@ We choose a subset M(p) for estimation. Example:
Output is 3 in quarter 1, 2 in quarter 2, and 2.5 in quarter 3...

Our moments may be the mean, standard deviation,
autocorrelation of output.

@ Let p be the true parameters, and M be the sample analogous to M.
If our model is correct:

A

E(W(5) - M(p)) = 0.
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GMM Estimation

@ Assume you know the moment generating function for some
parameters p: g(Xi, p).

o GMM performs

p= arggvin((g(Xt, p) — M(p))W (g(Xe, p) — M(p))')

W is an appropriate (positive-definite) weighting matrix.

@ When number of moments equal to number of parameters, we have
exact identification: MM.

Having more moments increases efficiency.

Allows us to test our overidentified model.
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Weighting Matrix

@ Often, studies use the identity weighting matrix.
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Weighting Matrix

@ Often, studies use the identity weighting matrix.

o Intuitively, we would like to give more weight to moments estimated
with high precision. Thus, use the variance-covariance structure.

p = argmin((g(Xc. p) - M(p))W(g(Xe, p) — M(p)))

Is asymptotically normally distributed with variance:

V = (D'WD) 1D'WswpD(D' WD) !

S= E(ZT:(g(Xt, p) = M(p))?)
t=1
b_ E( > a(g(Xt,g)p M(p)))
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Weighting Matrix Il

Optimal weighting matrix: W = S~!

V = (D'WD)"'D'WSWD(D'WD)~! = (D'S~ D)}

@ Preferred moment conditions have small S and large D.
@ Moments have small sample variation.

@ Moments are informative on p.
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Feasible GMM

In general, S depends on the parameter vector p.
© Start with an initial weighting matrix (e.g., identity matrix).
Q Estimate S.

Q Use W =25

@ lterative GMM: Continue procedure until convergence.
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GMM Estimation of Earnings Risk
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Which Moments? Two Approaches

Micro approach: Estimate by GMM on covariance matrix earnings growth,
&ih = Uin — Uip—1.

Macro approach: Estimate by GMM on covariance matrix of life-cycle
variance, Var(uj):
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Obtaining Residuals

eih = BXin + ujp.
Gin = ABXip + Augp.

@ The first step is to obtain residuals.

e Macro approach (ujn)

Run by age OLS regressions: e, = 5Xin + ujp.

@ Micro approach (gin)

Run by age OLS regressions: Gj, = ABXin + Aujp.

@ Assume any deviations from these predictable patters are shocks.
We as econometricians have the same information set as
the individual.
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Micro Approach

Residual earnings growth for 7;, = tjp 4+ 01 and iid shocks:
gih = Uih — Uih—1 = (p — 1)zjp—1 + €in + tin + tin—1[0 — 1] — OLin—2

We observe data for ages h = [1, ..., H]. However, at early ages, the
moments depend on unobserved data, i.e., zj,tjo, ti—1. As we have no
observations on these, we have to make some assumption. We will assume

2
et (075)

Lio ~ N(O, 0.L2)
Li1 ~ N(0,0‘E)
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Moment conditions

This leads to the following variance-covariance function:

2
O

I + 021+ (0 — 1)+ 6%

Var(gin) = 02 + (p — 1)°

2
2 O¢

+07[(0 - 1)1 - 0)]

Cov(gin, gin-1) = (p — 1)o? + p(p — 1)

1—p?
2 2 2 o2 2
Cov(gin, gin—2) = p(p — 1oz + p“(p—1) 1 —6,02 — 0o
1 2 2 o?
Cov(gin, &ih—n) = p" (p—1)oZ + p"(p — 1) 1_7}2 Vn > 2
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Moment Estimation

H(H+1)
2

The variance-covariance matrix (COV) has unique moments. Let

A~

M = vech(COV)
Estimation based on

p= arg;nin(M(p) — M)W (M(p) — M)Y',

where p=[0? p o2 4]
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|dentification

2
Oc

Cov(gihagih—n) = Pnil(P - 1)062 + pn(p - 1)21—7p2 Vn > 2

Distant lags of earnings growth are related because of mean reversion of
persistent shocks. This covariance should be negative forp < 1, or zero for
a random walk.

2
2 O¢

[t 1)1 - 6)]

Cov(gin, gin-1) = (p — 1)a? + p(p — 1)

If early lags of earnings growth are related beyond the effect of persistent
shocks, it indicates there are transitory shocks which are mean-reverting.

2
Ué
Cov(gin, gin—2) = p(p — 1)062 + PZ(P - 1)2 1—p2 - 9‘52

The second lag tells us whether this mean reversion takes longer than 1

period.
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Macro Approach

Residual earnings for 7jp = tjp + 0tjp_1 and iid shocks:
Uih = i + Zip + Lip + OLip—1

Model is identified by the variance-covariance matrix (assuming zjo = €jo
and Ti0 = [,,'0)2

h
Var(uip) = 02 + o2[1 + 6] + o2 szj
j=0
h—1
Cov(uip, Uip—1) = 02 + 020 + o> Z ptt¥
=0
h—2
Cov(ujp, uip—2) = ai + 062 Z p2+2j
j=0
h—n
Cov(ujp, Uip—n) = Ug + 062 Zp"+2j Vn>2
j=0
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Moment Estimation

H(H+1)
2

The variance-covariance matrix (COV) has unique moments. Let

A~

M = vech(COV)
Estimation based on

p= arg;nin(M(p) — M)W (M(p) — M)Y',

where p=[02 o2 p o2 0]
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|dentification

h—1
Var(uip) = 02 + o2[1 + 6% + o2 Z p%
Jj=0
Inequality growth over the life-cycle because of persistent shocks. If the
increase is linear,p = 1, It is concave for p < 1.
h—n
COV(U,'h, u,-h_,,) = O'gl + (762 an+2j Vn > 2
j=0
Earnings inequality today and at distant lags are related because of
permanent heterogeneity, or because of persistent shocks obtained in the

past.
h—1
Cov(uip, ujp_1) = 02 + 020 + o2 Z plt?
j=0

Inequality today and yesterday are related beyond that because of

transitory shocks.
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Additional Useful Techniques
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Bootstrapping

@ The asymptotic distribution of the estimator may be unknown.

@ Bootstrapping resamples the sample population many times to
compute statistics.

@ Example: we have M people and measure the mean height.
Redraw a random sample with length M and recompute mean.
Repeat N times.

Take standard deviation of outcomes.
@ When draws are i.i.d., this method works well.

@ In our case, observations are not i.i.d.
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Block-Bootstrapping

Horowitz (2003) provides a block-bootstrapping procedure for processes
that can be approximated by a Markov-process.
Example: Panel of Z individuals with 7 observations: Z(7 — 1) income
growth observations.

© Randomly draw Z(7 — 1) observations.
@ Compute income growth for each block.
© Compute moments of interest.

© Repeat N times.

© Take standard deviation over estimates.
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Method of Simulated Moments (MSM)

@ So far, we assume we know the moment generating function g(Xz, p).

As in the Micro and Macro approaches.
@ With more complex DGPs, we may not know this function.

@ Simulation based methods are a natural extension of GMM.
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MSM Idea

@ Assume you do not know the moment generating function g(X:, p).

@ You can simulate the ith moment gi()A(t, p) for a specific draw of
observables X;.

Initialize in the ergodic distribution.

Use a burn in period at simulation which you disregard.

@ Repeat this simulation R times for different draws X;.

R
i 1 i(wr
M'(p) = & > "g'(X{,p).
r=1
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MSM Estimator

p = argmin(M(p) — M)W (M(p) — M))',

With W = S~1, Duffie and Singleton (1993) show that asymptotic
variance of estimator is (1 + R~1)(D'S™1D)~1.

@ Loss of efficiency is small with R sufficiently large.
@ Important to have moments which are informative about p.

@ Moments should be estimated with little uncertainty.
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