
Estimating Earnings Risk

Felix Wellschmied

UC3M

Macroeconomics III

Felix Wellschmied (UC3M) Estimating Risk 1 / 26



Overview

The aim is to study the consequences of idiosyncratic earnings risk.

We will start with a simple model where risk is purely exogenous to
me.

We start with an econometric model for earnings:

ln(Eih) = eih = βXih + uih.

Log earnings can be decomposed into:

a deterministic (observable) component (βXih).

a stochastic (unobservable) component (uih).

implies shocks are proportional to log earnings.
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The Stochastic Component

An early approach (see MaCurdy (1982)) assumes that there are
persistent and transitory shocks following:

uih = αi + zih + τih

τih = MA(q)ιih

zih = ρzih−1 + ϵih

ιih are transitory shocks including:

bonuses.

short sickness.

strikes.

inflation.

αi is permanent heterogeneity.
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The Stochastic Component

uih = αi + zih + τih

τih = MA(q)ιih

zih = ρzih−1 + ϵih

ϵih are persistent shocks including:

shifts in idiosyncratic labor demand.

promotions.

job-ladder effects.

losing a high tenured job.

Usually these models are estimated by General Methods of Moments.
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General Methods of Moments (GMM)

Suppose our model creates a total of M(p) moments.

We choose a subset M(p) for estimation. Example:

Output is 3 in quarter 1, 2 in quarter 2, and 2.5 in quarter 3...

Our moments may be the mean, standard deviation,
autocorrelation of output.

Let p̃ be the true parameters, and M̂ be the sample analogous to M.
If our model is correct:

E(M̂(p̃)−M(p̃)) = 0.
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GMM Estimation

Assume you know the moment generating function for some
parameters p: g(Xt , p).

GMM performs

p = argmin
p

((g(Xt , p)− M̂(p))W (g(Xt , p)− M̂(p))′)

W is an appropriate (positive-definite) weighting matrix.

When number of moments equal to number of parameters, we have
exact identification: MM.

Having more moments increases efficiency.

Allows us to test our overidentified model.
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Weighting Matrix

Often, studies use the identity weighting matrix.

Intuitively, we would like to give more weight to moments estimated
with high precision. Thus, use the variance-covariance structure.

p = argmin
p

((g(Xt , p)− M̂(p))W (g(Xt , p)− M̂(p)))′

Is asymptotically normally distributed with variance:

V = (D ′WD)−1D ′WSWD(D ′WD)−1

S = E
( T∑

t=1

(g(Xt , p)− M̂(p))2
)

D = E
( T∑

t=1

∂(g(Xt , p)− M̂(p))

∂p

)
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Weighting Matrix II

Optimal weighting matrix: W = S−1

V = (D ′WD)−1D ′WSWD(D ′WD)−1 = (D ′S−1D)−1

Preferred moment conditions have small S and large D.

Moments have small sample variation.

Moments are informative on p.
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Feasible GMM

In general, S depends on the parameter vector p.

1 Start with an initial weighting matrix (e.g., identity matrix).

2 Estimate Ŝ .

3 Use W = Ŝ .

4 Iterative GMM: Continue procedure until convergence.
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GMM Estimation of Earnings Risk
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Which Moments? Two Approaches

Micro approach: Estimate by GMM on covariance matrix earnings growth,

gih = uih − uih−1.

Macro approach: Estimate by GMM on covariance matrix of life-cycle
variance, Var(uih):
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Obtaining Residuals

eih = βXih + uih.

Gih = ∆βXih +∆uih.

The first step is to obtain residuals.

Macro approach (uih)

Run by age OLS regressions: eih = βXih + uih.

Micro approach (gih)

Run by age OLS regressions: Gih = ∆βXih +∆uih.

Assume any deviations from these predictable patters are shocks.
We as econometricians have the same information set as
the individual.
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Micro Approach

Residual earnings growth for τih = ιih + θιih−1 and iid shocks:

gih = uih − uih−1 = (ρ− 1)zih−1 + ϵih + ιih + ιih−1[θ − 1]− θιih−2

We observe data for ages h = [1, ...,H]. However, at early ages, the
moments depend on unobserved data, i.e., zi0, ιi0, ιi−1. As we have no
observations on these, we have to make some assumption. We will assume

zi0 ∼ N

(
0,

σ2
ϵ

1− ρ2

)
ιi0 ∼ N(0, σ2

ι )

ιi−1 ∼ N(0, σ2
ι )

Felix Wellschmied (UC3M) Estimating Risk 13 / 26



Moment conditions

This leads to the following variance-covariance function:

Var(gih) = σ2
ϵ + (ρ− 1)2

σ2
ϵ

1− ρ2
+ σ2

ι [1 + (θ − 1)2 + θ2]

Cov(gih, gih−1) = (ρ− 1)σ2
ϵ + ρ(ρ− 1)2

σ2
ϵ

1− ρ2
+ σ2

ι [(θ − 1)(1− θ)]

Cov(gih, gih−2) = ρ(ρ− 1)σ2
ϵ + ρ2(ρ− 1)2

σ2
ϵ

1− ρ2
− θσ2

ι

Cov(gih, gih−n) = ρn−1(ρ− 1)σ2
ϵ + ρn(ρ− 1)2

σ2
ϵ

1− ρ2
∀n > 2
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Moment Estimation

The variance-covariance matrix (COV ) has H(H+1)
2 unique moments. Let

M̂ = vech(COV )

Estimation based on

p = argmin
p

(M(p)− M̂)W (M(p)− M̂))′,

where p = [σ2
ϵ ρ σ2

ι θ].
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Identification

Cov(gih, gih−n) = ρn−1(ρ− 1)σ2
ϵ + ρn(ρ− 1)2

σ2
ϵ

1− ρ2
∀n > 2

Distant lags of earnings growth are related because of mean reversion of
persistent shocks. This covariance should be negative forρ < 1, or zero for

a random walk.

Cov(gih, gih−1) = (ρ− 1)σ2
ϵ + ρ(ρ− 1)2

σ2
ϵ

1− ρ2
+ σ2

ι [(θ − 1)(1− θ)]

If early lags of earnings growth are related beyond the effect of persistent
shocks, it indicates there are transitory shocks which are mean-reverting.

Cov(gih, gih−2) = ρ(ρ− 1)σ2
ϵ + ρ2(ρ− 1)2

σ2
ϵ

1− ρ2
− θσ2

ι

The second lag tells us whether this mean reversion takes longer than 1
period.
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Macro Approach

Residual earnings for τih = ιih + θιih−1 and iid shocks:

uih = αi + zih + ιih + θιih−1

Model is identified by the variance-covariance matrix (assuming zi0 = ϵi0
and τi0 = ιi0):

Var(uih) = σ2
α + σ2

ι [1 + θ2] + σ2
ϵ

h∑
j=0

ρ2j

Cov(uih, uih−1) = σ2
α + σ2

ι θ + σ2
ϵ

h−1∑
j=0

ρ1+2j

Cov(uih, uih−2) = σ2
α + σ2

ϵ

h−2∑
j=0

ρ2+2j

Cov(uih, uih−n) = σ2
α + σ2

ϵ

h−n∑
j=0

ρn+2j ∀n > 2
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Moment Estimation

The variance-covariance matrix (COV ) has H(H+1)
2 unique moments. Let

M̂ = vech(COV )

Estimation based on

p = argmin
p

(M(p)− M̂)W (M(p)− M̂))′,

where p = [σ2
α σ2

ϵ ρ σ2
ι θ].
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Identification

Var(uih) = σ2
α + σ2

ι [1 + θ2] + σ2
ϵ

h−1∑
j=0

ρ2j

Inequality growth over the life-cycle because of persistent shocks. If the
increase is linear,ρ = 1, It is concave for ρ < 1.

Cov(uih, uih−n) = σ2
α + σ2

ϵ

h−n∑
j=0

ρn+2j ∀n > 2

Earnings inequality today and at distant lags are related because of
permanent heterogeneity, or because of persistent shocks obtained in the

past.

Cov(uih, uih−1) = σ2
α + σ2

ι θ + σ2
ϵ

h−1∑
j=0

ρ1+2j

Inequality today and yesterday are related beyond that because of
transitory shocks.
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Additional Useful Techniques
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Bootstrapping

The asymptotic distribution of the estimator may be unknown.

Bootstrapping resamples the sample population many times to
compute statistics.

Example: we have M people and measure the mean height.

Redraw a random sample with length M and recompute mean.

Repeat N times.

Take standard deviation of outcomes.

When draws are i.i.d., this method works well.

In our case, observations are not i.i.d.
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Block-Bootstrapping

Horowitz (2003) provides a block-bootstrapping procedure for processes
that can be approximated by a Markov-process.

Example: Panel of I individuals with T observations: I(T − 1) income
growth observations.

1 Randomly draw I(T − 1) observations.

2 Compute income growth for each block.

3 Compute moments of interest.

4 Repeat N times.

5 Take standard deviation over estimates.
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Method of Simulated Moments (MSM)

So far, we assume we know the moment generating function g(Xt , p).

As in the Micro and Macro approaches.

With more complex DGPs, we may not know this function.

Simulation based methods are a natural extension of GMM.
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MSM Idea

Assume you do not know the moment generating function g(Xt , p).

You can simulate the ith moment g i (X̂t , p) for a specific draw of
observables X̂t .

Initialize in the ergodic distribution.

Use a burn in period at simulation which you disregard.

Repeat this simulation R times for different draws X̂t .

M i (p) =
1

R

R∑
r=1

g i (X̂ r
t , p).
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MSM Estimator

p̂ = argmin
p̂

(M(p̂)− M̂)W (M(p̂)− M̂))′,

With W = S−1, Duffie and Singleton (1993) show that asymptotic
variance of estimator is (1 + R−1)(D ′S−1D)−1.

Loss of efficiency is small with R sufficiently large.

Important to have moments which are informative about p.

Moments should be estimated with little uncertainty.
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